
Communication-approximation solutionsMulti-way objective/partitioning solutions

 This toolbox simplifies testing multiple load-balancing strategies to find optimal configurations and reduce simulation runtime;
 Enables targeted statistical analysis, leading to significant performance gains.
 Future work:
● Extend this toolbox to consider memory limitations inside the balancing algorithms;
● Extend to use with other AMReX-based applications;
● Use this toolbox to test power-aware load balancing strategies focusing on energy-efficient distributions.

Jessica Imlau Dagostini1, Sowmya Yellapragada2, Kevin Gott3, Rebecca Hartman-Baker3
1University of California Santa Cruz; 2University of Utah; 3Lawrence Berkeley National Laboratory

A Toolbox for Load Balancing Development and Analysis in WarpX/AMReX Applications

In this work, we present a new toolbox designed to streamline the collection and analysis of load balancing data from WarpX/AMReX simulations. Our tools enable running simulations and efficiently
collect and parse load balancing data from WarpX runs, and a mechanism to re-run collected data with different load balancing strategies for posterior analysis and comparison. We demonstrate the

applicability of our tool by performing the full-step process of collection and data analysis with a laser-ion simulation.A
bs

tr
ac

t

Background and
Motivation

AMReX is a software framework designed for solving partial
differential equations using adaptive mesh refinement (AMR)
techniques.
WarpX, an advanced time-based 1D/2D/3D/RZ
electromagnetic & electrostatic Particle-In-Cell code to
generate realistic input sets. WarpX is based on AMReX.

Workload on AMReX/WarpX is
mainly defined on Boxes. Each
box has a “weight” assigned to
it, and this is used to balance
the load across ranks.

Testing and comparing their efficiency using realistic data can
be challenging, particularly when done outside the context of
the entire application.
Our toolbox simplifies the extraction of data from WarpX and
enables developers to conduct statistical load balancing
inferences over real data efficiently.

The Load Balancing Extractor Toolbox A Laser-Ion Acceleration Story

● Our toolbox leverages one of
WarpX's “Reduced Diagnostics” to
collect load balancing costs.

● With just two commands a developer
can generate + run load balancing.

Run WarpX Collect weights
and geometry

Simulation + Data Extraction Load Balancing

LB Metrics
Run LB

heuristics

To demonstrate the applicability of our tool, we run WarpX on A100 GPU nodes
from NERSC’s Perlmutter, varying from 4 to 96 GPUs.

We ran the Laser Ion Acceleration with a Planar Target [1], with grid sizes of
● (2688, 3712) and a maximum grid size of 512, creating 48 total boxes;
● (7488, 14720) and a maximum grid size of 512, creating 435 total boxes.
The balancing metric used in this run was WarpX’s timers to weight each box.

LB
 H

eu
ri

st
ic

s

Knapsack
Order boxes by weight.
Assigns the next heaviest
box to the lightest rank.

Space Filling Curve
Order boxes by their
proximity in the grid.
Cut this sorted list by
maximum allowable weight
(proportional average).

Karmarkar-Karp
Split boxes into subsets and
tuples. Mix the two subsets
with the most significant
difference.

Painters Partition
Order boxes by proximity
in the grid (as SFC).
Binary search for the
optimal cutting weight.

References:
[1] https://warpx.readthedocs.io/en/latest/usage/examples/laser_ion/README.html [2] https://github.com/jessdagostini/amrex_LB

ACKNOWLEDGMENTS

This work was supported by the Computing Sciences Summer
Program from NERSC and LBL. Special thanks to Kevin Gott,
Rebecca Hartman-Baker, and Sowmya Yellapragada.

With collected metrics, the user can start asking questions:
● What is the efficiency behavior of each algorithm over time?

What are the peaks over the execution?
● Redistribution of workload to improve efficiency;
● WarpX uses a ratio efficiency to decide when to redistribute;
● User-defined variable (default value is 10% of improvement).

Bigger ratios to
redistribution

impacts on the
number of

redistributions
each algorithm

performs.
Correlating
efficiency and
redistributions,
we can observe
that Knapsack,
Karmarkar-Karp,
and
Painter+Knapsack

Finally, the time to run the balancing distribution is also an important
aspect to consider when analysing load balancing strategies.
What is the overhead each algorithm brings to the simulation?Combinations of algorithms

These algorithms can be mixed and test interesting combinations, e.g. SFC+Knapsack combines an SFC algorithm across nodes,
optimizing inter-node communication, with Knapsack on each individual node to evenly distribute the workload node-locally.

Knapsack and Karmarkar-Karp show the highest efficiencies. From
SFC/comms-aware solutions, Hilbert+Painter gets good results.

How many redistributions happens with different % of improvement?

Our toolbox allows users to focus on the statistical analysis of load balancing, empowering them to explore the effects of different strategies and find the optimal solutions

Possible follow-ups from this analysis can be
● What is the impact of less redistribution on performance?
● What algorithm does less redistribution and keeps high efficiency?

Evaluation

Currently enabled evaluations
● Efficiency over time
● Average efficiency
● Redistribution of work
● Time to compute distribution

Conclusions &
Future Work

Our toolbox easily
enables testing different
improvement ratios and
analysis of their impact
efficiency without having
to re-run full experiment

We easily run same simulation with varying redistribution algorithms

The toolkit collect multiple metrics that allows different analysis to find 'sweet spots'

Using Z-order and Hilbert strategies

Scan to access video
presentation, source code,
and more resources.

present most of results in the desired quadrant (top-left).

https://warpx.readthedocs.io/en/latest/usage/examples/laser_ion/README.html
https://github.com/jessdagostini/amrex_LB

